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Statistical Reference 

This manual describes the statistical techniques, statistics, and strategies that are 
implemented in Forecast Pro. It is not necessary that you fully understand, or even read, 
this manual in order to produce accurate forecasts with the product. 

Those who would like a more thorough coverage of this topic should consult the book 
Applied Statistical Forecasting or any of the other texts found in the bibliography. 
Applied Statistical Forecasting was written by Dr. Robert L. Goodrich, the author of 
Forecast Pro, and is available from Business Forecast Systems. 

This chapter begins by presenting each of the forecasting models and concludes with a 
discussion of the model statistics presented by the program. The topics are: 

 Expert selection 

 Simple methods 

 Exponential smoothing 

 Discrete distributions 

 Croston’s intermittent demand model 

 Curve fitting 

 Box-Jenkins 

 Dynamic regression 

 Model statistics 



2  Expert Selection 

Expert Selection 
Expert selection allows Forecast Pro to select an appropriate univariate forecasting 
technique automatically. Expert selection operates as follows. 

If the data set is very short, Forecast Pro defaults to simple moving average. 

Otherwise Forecast Pro examines the data for the applicability of the intermittent or 
discrete forecast models. Although the forecasts produced from such models are just 
straight horizontal lines, they often provide forecasts superior to those from exponential 
smoothing for low-volume, messy data. 

If neither of these models are applicable to the data, the choice is now narrowed down to 
different forms of exponential smoothing and Box-Jenkins models. Forecast Pro next 
runs a series of tests on the data and applies a rule-based logic that may lead to a model 
selections based on data characteristics. 

If the rule-based logic does not lead to a definitive answer, Forecast Pro performs an out-
of-sample test to choose between an exponential smoothing model and a Box-Jenkins 
model. 

There is also a question of selecting the form of the exponential smoothing and Box-
Jenkins models. This procedure is documented in the Implmentation of Exponential 
Smoothing in Forecast Pro and Implmentation of Box-Jenkins in Forecast Pro sections of 
this manual. 

Simple Methods 
Forecast Pro supports three variants of the n-term simple moving average, which we 
symbolize as SMA(n). The essence SMA(n) is to estimate the current level St of the series 
as the average of the last n observations. The level of the series is defined as the value 
that the observation would take if it were not obscured by noise. 
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−
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The forecast for time t+m from the forecast base t is simply a horizontal line at the level 
St. 

 ( )Y m St t=  

Confidence limits for SMA(n) are determined by assuming that the true underlying 
process is a random walk with observation error. 

SMA(n) has one purpose—to decrease the effect of noise on the estimated true value of 
the series. It cannot pick up the effects of seasonality or trending. Thus its capabilities are 
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very similar to those of simple exponential smoothing, except that the model has no 
parameters that need to be fitted to the data. 

SMA(n) should be used only when the historical data record is so short and so noisy that 
it is meaningless to try to extract patterns from the data or even to estimate a smoothing 
weight. In any other circumstance, one of the exponential smoothing models will 
outperform SMA(n). 

Forecast Pro offers three versions of SMA(n)—Automatic, Moving average and Random 
walk. Automatic determines the number of terms n in the moving average by determining 
the n that minimizes error over the historic sample. Moving average lets the user set n. 
Random walk sets n to 1, so that the forecast consists of the last observed value. 

Exponential Smoothing 
Exponential smoothing is the most widely applicable of the univariate time series 
methods to business data. In the absence of information to the contrary, it is probably the 
best choice for the typical user. 

Although exponential smoothing was first developed over thirty years ago, it is still very 
much a hot topic in research circles. If anything, its reputation as a robust, easy to 
understand methodology has increased in recent years, often at the expense of 
Box-Jenkins. 

The main reason for this is that Box-Jenkins models are built upon the abstract statistical 
concept of autocorrelation, while exponential smoothing models are built upon clear-cut 
features like level, trend, and seasonality. Exponential smoothing models are therefore 
less likely to be influenced by purely statistical quirks in the data. 

Harvey [1984, 1990] has extended the exponential smoothing approach in his 
development of so-called structural models. Structural model forecasts are generated 
from a Kalman filter built upon a formal statistical model involving the same features as 
exponential smoothinglevel, trend and seasonality. We now recognize exponential 
smoothing for what it really isapproximate Kalman filters fitted directly to the data. 

This establishes a framework for extending the basic exponential smoothing 
methodology. You will see two such extensions in the methodological descriptions 
below. 

Proportional error models extend exponential smoothing to the case where errors 
tend to be proportional to the level of the data. The majority of business data seem 
to exhibit this trait. 

Event adjustment models extend exponential smoothing to include the estimation 
of, and adjustment for, promotional or other nonperiodic events.  



4  Exponential Smoothing 

Conceptual Overview 
Exponential smoothing is based upon a structural model of time series data. We assume 
that the time series process manifests some or all of the following structural components. 

Level. The level of a time series is a smooth, slowly changing, nonseasonal 
process underlying the observations. We cannot measure the level directly because 
it is obscured by seasonality, promotional events and irregularity (noise). It must 
be estimated from the data. 

Local Trend. The local trend is the smooth, slowly changing rate of change of the 
level. We call it local to emphasize the fact that at each point in time it undergoes 
a small but unpredictable change. Forecasts are based on the local trend at the end 
of the historic data, not the overall global trend. We cannot measure the trend 
directly. It must be estimated from the data. 

Seasonal Effects. Additive or multiplicative seasonal indexes represent periodic 
patterns in the time series, like the annual patterns in retail sales. Like the level 
and the trend, seasonal indexes must be estimated from the data. They are 
assumed to undergo small changes at each point in time. 

Event Effects. Promotional events influence sales in much the same way as 
seasonality but they are not usually periodic. Additive or multiplicative event 
indexes are estimated from the data in much the same way as seasonal indexes. 
They are assumed to undergo small changes at each point in time. 

Random Events. The level, local trend, seasonal and event indexes are all 
stochasticthat is their values change unpredictably from point to point in time. 
These changes are caused by unpredictable events like the amount by which a 
company’s actual profit or loss differs from what was expected. These are often 
called random shocks. 

Noise. All of the features described so far are components of an ongoing historical 
process. Our measurements of the process, however, are usually corrupted by 
noise or measurement error. For instance, chewing gum shipments or chewing 
gum orders are noisy measurements of chewing gum consumption. 

Three of these features—level, random events and noise—are present in every 
exponential smoothing model. The remaining three—local trend, seasonal indexes and 
event effects—may be present or absent. We identify a model by determining which of 
these features should be included to describe the data properly. 

Originally, exponential smoothing models were built informally on these features, with 
little attention paid to the underlying statistical model. Exponential smoothing equations 
were merely plausible means at estimating time series features and extrapolating them. 
There was no way to estimate confidence limits properly, since they depend upon the 
underlying statistical model. 
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Some software developers responded to the need for confidence limits with little or no 
theoretical justification. While the point estimates from such software have been good, 
the confidence limits have been nearly unusable. 

Forecast Pro takes a more modern approach to exponential smoothing. Each variant of 
exponential smoothing is based upon a formal statistical model which also serves as a 
basis for computation of confidence limits. The actual smoothing equations are based 
upon the Kalman filter for the formal statistical model. Of course, all of this is under the 
hood, and you need not know the details. 

Models of the Exponential 
Smoothing Family 
Here we will provide an overviewwithout equationsof the models that make up the 
exponential smoothing family. 

Every exponential smoothing model involves at least the following three components. 

 Level 

 Random events 

 Noise 

Simple exponential smoothing involves only these components. The data are assumed to 
consist of the level, slowly and erratically changing as random events impact it, and 
corrupted by noise. Simple exponential smoothing cannot capture the effects of 
seasonality or trending. 

The remaining components 

 Trend 

 Seasonal indexes 

 Event indexes 

are optional. They model features that may or may not be present in the data. 

The trend can enter in four waysnone, linear, damped or exponential. 

The forecasts from an untrended model are flat, except perhaps for the effects of seasonal 
or event indexes. 

The forecasts from a linear trend model extrapolate the last estimate of the trend without 
limit. The forecasts eventually become positively or negatively infinite. 
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The forecasts from a damped trend begin almost linearly but die off exponentially until 
they reach a constant level This may be appropriate for data influenced by business 
cycles. Damped trend models produce forecasts that remain finite. 

The forecasts from an exponential trend begin almost linearly but increase as a percentage 
of themselves. This explosive growth model should only be used when the data are truly 
growing exponentially. 

The Holt model includes a linear trend but does not accommodate seasonal or event 
effects. The level of the data changes systematically because of the trend. It is also 
impacted by random events. The trend varies randomly from point to point as it too is 
impacted by random events. Observations are obscured by noise. 

Seasonal indexes can enter in three waysnone, additive or multiplicative. 

If the indexes are multiplicative, the seasonal adjustment is made by multiplying the 
index into the deseasonalized series. Thus the effect is proportional to the level of the 
time series. December sales are adjusted upwards by 20% if the seasonal index is 1.2. 
This is the most common form of seasonality but it applies only to positive, ratio scale 
data. 

If the indexes are additive, the seasonal adjustment is made by adding the index onto the 
deseasonalized series. Thus the effect is independent of the level of the time series. 
December sales are adjusted upwards by 1000 if the seasonal index is 1000. 

The multiplicative (additive) Winters exponential smoothing model extracts the level, 
trend, and multiplicative (additive) seasonal indexes. The underlying nonseasonal model 
is the same as Holt. 

Event indexes can also enter in three different waysnone, additive or multiplicative. 
The adjustments are analogous to those for seasonal indexes. The difference is that the 
adjustment is made each time a certain event occurs rather than tying the adjustment to 
the calendar. 

Event index models extend the Holt-Winters family of exponential smoothing models, 
which includes only the four trend options and three seasonality options, or twelve 
models in all. The following figure portrays the forecast profiles of these twelve models. 
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Forecast Profiles of Exponential Smoothing Models (Gardner [1985]) 

These forecast profiles are created by extrapolating the level, trend and seasonality index 
estimates from the end of the historic data. They depict the underlying patterns of the data 
as these patterns exist at the end of the data. They do not and cannot include the effects of 
future random events or noise, so they are much smoother than the actual future will turn 
out to be. 

Exponential smoothing works as its name suggests. It extracts the level, trend and 
seasonal indexes by constructing smoothed estimates of these features, weighting recent 
data more heavily. It adapts to changing structure, but minimizes the effects of outliers 
and noise. 

The degree of smoothing depends upon parameters that must be fitted to the data. The 
level, trend, seasonal index and event index estimations require one parameter each. If the 
trend is damped (or exponential), the damping (or growth) constant must also be 
estimated. The total number of parameters that must be fitted to the data depends on the 
components of the model. 

Implementation of Exponential 
Smoothing in Forecast Pro 
This section presents some details about the Forecast Pro implementation of exponential 
smoothing.  
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Model selection 

To select a smoothing model automatically, Forecast Pro tries all of the “standard” Holt-
Winters candidate models and chooses the one that minimizes the Bayesian information 
criterion (BIC). The BIC is a goodness-of-fit criterion that penalizes more complex 
models, i.e., those that require fitting more parameters to the data. Research has shown 
that this leads to the model that is likely to forecast most accurately (Koehler and 
Murphree [1986]). 

To determine the standard candidate models, Forecast Pro applies the following rules: 

1. Automatic model selection does not consider exponential trend models due to their 
ability to grow explosively in the forecast period. If you wish to build exponential trend 
models you must use the custom modeling option.  

2. If there are less than 5 data points, then Forecast Pro does not attempt to fit a Holt-
Winters model to the data. A simple moving average model, which does not require 
parameter estimation, is substituted. 

3. If there is less than two years worth of data, then Forecast Pro Unlimited does not 
consider seasonal models. 

4. If the data contain negatives or zeroes, multiplicative index models are not considered. 

If the NA-CL model is under consideration (by default it is) and/or if seasonal 
simplification models are under consideration (by default they are not). Then an out-of-
sample test is used to select amongst the standard model that minimized the BIC and the 
NA-CL and/or seasonally simplified models. 

Parameter optimization 

To estimate model parameters, the program uses an iterative search (simplex method) to 
minimize the sum of squared errors over the historic data. The search begins at default 
values set by the program. Theoretically, the search could yield a local, rather than the 
global, minimum. In practice, the authors know of almost no instances where this has 
occurred or where the algorithm has failed to converge. 

Confidence limits 

Forecast Pro outputs lower and upper confidence limits for exponential smoothing 
forecasts. The confidence limits for nonseasonal and additive seasonal models are 
computed by making the assumption that the underlying probability model is the specific 
Box-Jenkins model for which the exponential smoothing model is known to be optimal 
(see Yar and Chatfield [1990]). 

The confidence limits for multiplicative seasonal models are computed as described by 
Chatfield and Yar [1991]. The error standard deviation is assumed to be proportional 
either (1) to the corresponding seasonal index or (2) to the corresponding seasonal index 
and the current estimate of the level. 
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For the nonseasonal models, the error standard deviation is assumed either (1) constant or 
(2) proportional to the current estimate of the level. For the additive seasonal models, it is 
assumed either (1) constant or (2) proportional to the current estimate of the seasonalized 
level. 

In each case, Forecast Pro decides which option to use by determining which fits the 
historical data more closely. 

These confidence limits are useful guides to expected model performance, but they are 
not perfect, since the actual underlying probability model of the data is not known. Their 
usefulness for multiple-step forecasts deteriorates when the historical errors appear to be 
correlated. 

Notice that the Chatfield-Yar confidence limits differ somewhat from those based on the 
underlying Box-Jenkins models. 

Statistical Description of 
Exponential Smoothing 
Each of the smoothing techniques uses recursive equations to obtain smoothed values for 
model components. Simple uses one equation (level), Holt uses two (level and trend), 
Winters uses three (level, trend and seasonal). Event index models require an additional 
equation. Each equation is controlled by a smoothing parameter. When this parameter is 
large (close to one), the equation heavily weights the previous values in the seriesi.e., 
the smoothing process is highly adaptive. If the parameter is small (close to zero), the 
equation weights previous values decreasingly far into the pasti.e., the smoothing 
process is not highly adaptive. 

The following table defines the notation that will be used in the detailed discussion of 
exponential smoothing. It is adapted from that of Gardner [1985]. 

m Forecast lead time 

p Number of periods per year 

Yt Observed value at time t 

St  Smoothed level at end of time t  

Tt  Smoothed trend at end of time t  

It Smoothed seasonal index at end of time t  

Jt Smoothed event index at end of time t  

α Smoothing parameter for level of series  

γ  Smoothing parameter for trend  
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δ  Smoothing parameter for seasonal indexes  

λ  Smoothing parameter for event indexes  

ϕ Damped/exponential trend constant  

 ( )Y mt  Forecast for time t+m from base t  
~It m+  Most recent seasonal index for time t+m  
~Jt m+  Most recent event index for time t+m  

The Forecast Pro output calls α the level parameter, γ the trend parameter, δ the seasonal 
parameter, λ the event parameter and ϕ the decay/growth constant. 

General Additive Index Model 
There are twelve exponential smoothing models, so it would not be practical or 
interesting to discuss each individually. We will instead discuss the most fully featured 
model and how it relates to simpler models. 

The most complex additive index model involves the level St, the trend Tt, the seasonal 
index It and the event index Jt. The trend is assumed to decay at the rate ϕ ≤ 1. The 
observations Yt are assumed to be composed of these components as follows. 

Y S I J et t t t t= + + +  

The components St, It and Jt in this equation are the true values for the level, seasonal and 
event indexes at the time t. However, they cannot be observed directly but, rather, must 
be estimated from the data. This done by using the following recursive equations, which 
comprise an approximate Kalman filter for the underlying model. The italicized symbols 
now refer to estimates of the true values. 

S Y I J S T

T S S T

I Y S J I

J Y S I J

t t t t t t

t t t t

t t t t t

t t t t t

= − − + − +

= − + −

= − − + −

= − − + −

− −

− −

α α ϕ

γ γ ϕ

δ δ

λ λ

( ~ ~ ) ( ) ( )

( ) ( )

( ~ ) ( ) ~

( ~ ) ( ) ~

1

1

1

1

1 1

1 1

 

The symbol ~It  refers to the most up-to-date prior estimate of the seasonal index for the 
month (quarter, week) that occurs at time t. If t refers to December, 1993, then this 
estimate will have been last updated in December, 1992. The symbol ~Jt  refers to the most 
up-to-date prior estimate for an event of the type that occurs at time t. These equations 
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update the prior estimates St-1, Tt-1, 
~It  and ~Jt  to reflect the last observation. The posterior 

estimates are the quantities on the left hand side of the equations—St, Tt, It and Jt. 

All the simpler additive models are, in a sense, contained in these equations. 

If there is no event at time t, or if event indexes are not wanted, then J Jt t= =~ 0 
and the last equation is discarded. 

These equations involve a decaying trend. In this case the decay constant ϕ is 
usually a little less than one. To convert the model to a linear trend model, just set 
ϕ to 1.0. This is equivalent to erasing it from the equations. To convert the model 
to an exponential trend model, just set ϕ to a value greater than 1.0. 

If seasonal indexes are not wanted, discard the third equation and set St  to 0 
elsewhere. 

If a trend is not wanted, discard the second equation and set Tt  to 0 elsewhere. 

These equations clearly show how exponential smoothing actually works. Let us look 
carefully at the first. The quantity Y I Jt t t− −~ ~  represents the current observation, adjusted 
for seasonal and event effects by subtracting off their last available prior estimates. The 
adjustment yields an estimate of the current level. The quantity S Tt t− −+1 1ϕ  represents the 
forecast of the current level St  based on information available previous to the last 
observation. The first term, based on the current observation, is weighted by α and the 
second, based on previous information, is weighted by (1-α). 

Each smoothed estimate of the level is computed as a weighted average of the current 
observation and past data. The weights decrease in an exponential pattern. The rate of 
decrease depends on the size of the smoothing weight α, which thus controls relative 
sensitivities to newer and older historic data. The larger the value of the smoothing 
parameter, the more emphasis on recent observations and the less on distant. 

The parameters γ, ϕ, δ and λ are fitted to the data by finding the values that minimize the 
sum of squared forecast errors for the historic data. To compute the sum of squared errors 
for trial values of γ, ϕ, δ and λ, the following steps are performed. 

The initial values of the four components S0, T0 ,I0 and J0 are set equal to 
reasonable guesses based on the data. 

The one-step forecast for the first data point t=1 is generated via the equation 
 ( ) ~ ~Y S T I J0 0 0 1 11 = + + +ϕ . The forecast error Y Y1 1 1−  ( )  is computed and squared. 

This step is repeated for t=2 to the end of the historic data t=T. The forecast 
formula is  ( ) ~ ~Y S T I Jt t t t t1 1 1= + + ++ +ϕ  so the error is Y S T I Jt t t t t− − − −+ +ϕ ~ ~ .1 1  As 
each point is forecasted, the forecast error is squared and accumulated. 
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This procedure is iterated with new trial values of the parameters until the values that 
minimize the sum of squared errors are found. The trial parameter values are determined 
by the simplex procedure, an especially stable algorithm for nonlinear minimization. 

Once the parameters have been estimated by fitting to the data, the model is used to 
compute the forecasts. The equation for the forecast of YT+m from the forecast base YT 
(last historic data point) is as follows. 

 ( ) ~ ~Y m S T I JT T
i

i

m

T T m T m= +








 + +

=
+ +∑ϕ

1
. 

General Multiplicative Index Model 
The general multiplicative model looks almost the same as the additive, except that 
multiplication and division replace addition and subtraction. The multiplicative equations 
are as follows. 
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Simpler models are obtained from these equations in much the same way that they are for 
the additive case. 

If there is no event at time t, or if event indexes are not wanted, then J Jt t= =~ .10 
and the last equation is discarded. 

These equations involve a decaying trend. In this case the decay constant ϕ is 
usually a little less than one. To convert the model to a linear trend model, set 
ϕ equal to 1.0 or simply remove all references to ϕ. 

If seasonal indexes are not wanted, discard the third equation and set to 1.0 
elsewhere. 

If a trend is not wanted, discard the second equation and set Tt  to 0 elsewhere. 

Now that the full additive and multiplicative smoothing equations have been presented, 
we will examine some of the simpler models that they contain as special cases. 
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Simple Exponential Smoothing 
The simple exponential smoothing model is used for data that are untrended, nonseasonal 
and not driven by promotional events. We can get its equation from either the general 
additive or general multiplicative model by discarding the last three equations and 
eliminating the seasonal and event indexes from the first. We are left with the following. 

S Y St t t= + − −α α( )1 1 
 

(1) 

Notice that when  

α = 1 0.  

the equation becomes 

S Yt t=  

i.e., there is no “memory” whatsoever of previous values. The forecasts from this model 
would simply be the last historic point. On the other hand, if the parameter is very small, 
then a large number of data points receive nearly equal weights, i.e., the memory is long. 
The other exponential smoothing models use additional smoothing parameters in 
equations for smoothed values of trend and seasonality, as well as level. These have the 
same interpretation. The larger the parameter, the more adaptive the model to that 
particular time series component. 

Equation (1) shows how the smoothed level of the series is updated when a new 
observation becomes available. The m step forecast using observations up to and 
including the time t is given by 

( )Y m St=  
 

(2) 

i.e., the current smoothed level is extended as the forecast into the indefinite future. 
Clearly, simple exponential smoothing is not appropriate for data that exhibit extended 
trends. 

Holt Exponential Smoothing 
Holt’s [1957] exponential smoothing model uses a smoothed estimate of the trend as well 
as the level to produce forecasts. The forecasting equation is 

( )Y m S mTt t= +  
 

(3) 

The current smoothed level is added to the linearly extended current smoothed trend as 
the forecast into the indefinite future. 

The smoothing equations are 
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( )( )S Y S Tt t t t= + − +− −α α1 1 1  
 

(4) 

T S S Tt t t t= − + −− −γ γ( ) ( )1 11  
 

(5) 

where the symbols were defined previously. Equation (4) shows how the updated value of 
the smoothed level is computed as the weighted average of new data (first term) and the 
best estimate of the new level based on old data (second term). In much the same way, 
equation (5) combines old and new estimates of the one period change of the smoothed 
level, thus defining the current linear (local) trend. 

Multiplicative Winters 
In multiplicative Winters, it is assumed that each observation is the product of a 
deseasonalized value and a seasonal index for that particular month or quarter. The 
deseasonalized values are assumed to be described by the Holt model. The Winters model 
involves three smoothing parameters to be used in the level, trend and seasonal index 
smoothing equations. 

The forecasting equation for the multiplicative Winters model is 

( ) ( )  ( )Y m S mT I mt t t= +  
 

(6) 

i.e., the forecast is computed similarly to the Holt model, then multiplied by the seasonal 
index of the current period. 

The smoothing equations are obtained from the general multiplicative equations by 
setting ϕ to 1 and discarding the parts that involve event indexes. 

S
Y

I
S Tt
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The level smoothing equation (7) is similar to equation (4) for the Holt model, except that 
the latest measurement is deseasonalized by dividing by the seasonal index calculated one 
year before. The trend smoothing equations of the two models are identical. The seasonal 
index is estimated as the ratio of the current observation to the current smoothed level, 
averaged with the previous value for that particular period. 
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Additive Winters 
In additive Winters, it is assumed that each observation is the sum of a deseasonalized 
value and a seasonal index. The deseasonalized values are assumed to be described by the 
Holt model. The equations for additive Winters are nearly identical to those of 
multiplicative, except that deseasonalization requires subtraction instead of division. 

The forecasting equation for the additive Winters model is 

( ) ( ) Y m S mT I mt t t t= + +  
 

(10) 

The smoothing equations are obtained from the general additive equations by setting ϕ to 
1 and discarding the event indexes. 

S Y I S Tt t t p t t= − + − +− − −α α( ) ( )( )1 1 1  
 

(11) 

T S S Tt t t t= − + −− −γ γ( ) ( )1 11  
 

(12) 

I Y S It t t t p= − + − −δ δ( ) ( )1  
 

(13) 

NA-Constant Level Model  
Forecast Pro supports a form of exponential smoothing that we refer to as an NA-
Constant Level model or a “salt” model (a word play on NaCl). The model is a variation 
of the Additive Winters whereby the trend term is omitted and the smoothing weight α is 
set to a very small value. By constraining α to a small value the model enforces a constant 
level and the seasonal component models the departures from the constant level. The 
model works particularly well for data that exhibit a “selling season” whereby the 
majority of the demand occurs at specific times of the year (e.g., snow shovels, flu 
vaccines, etc.). 

Seasonally Simplified Exponential 
Smoothing 
In a standard seasonal exponential smoothing model the number of seasonal indices used 
to model the seasonality equals the number of periods per year. For example there would 
be 12 seasonal indices for monthly data, 52 seasonal indices for weekly data, etc. Forecast 
Pro supports seasonally simplified models whereby the number of indices used to model 
the seasonal component is less than the number of periods per year. 

The model is particularly useful for modeling noisy weekly data sets, where using 52 
seasonal indices can sometimes result in an overly complex seasonal component that fits 
to the noise rather than capturing the underlying seasonal pattern. 

A seasonally simplified exponential smoothing model substitutes a carefully constructed 
event model for the seasonal component. The event schedule is constructed to map each 



16  Discrete Distributions 

period of the year into a seasonal “bucket.” For example if you wanted to reduce the 
number of seasonal indices for a weekly data set from 52 to 26 you would map weeks 1 
and 2 of each year into event type 1, weeks 3 and 4 into event type 2, etc. The resulting 
model would calculate 26 event indices to capture the seasonal pattern. We would refer to 
the model as having a “bucket size” of 2 since two weeks each year were put into each of 
the 26 buckets. If we used a bucket size of 4 then the weeks 1-4 of each year would map 
into event type 1, weeks 5-8 into event type 2, etc. and the resulting model would 
calculate 13 event indices to capture the seasonal pattern. 

Forecast Pro includes the ability to consider seasonally simplified models as part of 
expert selection as well as allowing you to build them as a customized exponential 
smoothing model. 

Discrete Distributions 
Most statistical forecasting models are based on interval data, i.e., data for which zero has 
no special meaning. Forecasts and data can be negative as well as positive, and the 
interval from zero to one is statistically equivalent to the interval from 100 to 101. Very 
little business data are interval in nature but, for the most part , interval data forecast 
models still perform well. 

But there are exceptions. For instance the data might consist entirely of zeroes and small 
integers. Infrequently used spare parts often fall into this class. The forecasts from simple 
exponential smoothing for such items may be perfectly reasonable and useful, but the 
confidence limits are usually unusable. 

This is due to the confidence limits from a standard model being symmetric. They do not 
take into account that sales of these types of items cannot go negative but might become 
very large. The discrete distributions forecast model produces the same point forecasts 
but produces much more accurate confidence limits. 

Forecast Pro tries two different discrete distributions to fit the datathe Poisson 
distribution and the negative binomial distribution. Forecast Pro selects the distribution 
that fits the data better and uses that distribution to compute the forecasts. 

Poisson Distribution 
The Poisson distribution ranges over integers in the range {0,1,2,...}. It applies to such 
processes as the number of customers per minute who arrive in a queue, the number of 
auto accidents per month on a given road, or sales of a particular spare part per month. 

The probability that exactly x events occur is given by the following formula. 
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The Poisson distribution has a single parameter λ that equals both the mean number of 
events per unit of time, and the variance around the mean. This parameter λ is a positive 
real number. Forecast Pro chooses the Poisson distribution when the ratio of the sample 
mean to the sample variance is near unity. 

It is likely that the mean number of events per unit of time is actually changing over time. 
Therefore we must estimate λ as a time series in its own right. It has been shown by 
Harvey [1989] that this is optimally done via simple exponential smoothing. The current 
estimate of the level is also an estimate of the current value of λ. 

Therefore Forecast Pro performs the following steps. 

Use simple exponential smoothing to estimate and forecast λ. The forecasts are 
equal to the value of λ at the end of the series. 

Use the final value of λ to determine from the equation for the distribution the 
probabilities of 0, 1, 2, ... events per unit of time. These in turn are used to 
compute integer confidence limits. 

The advantage to using a discrete distribution is not an improved point forecast but 
improved confidence limits, and the availability of a formula to compute the probability 
of zero events, one event, etc. 

Negative Binomial Distribution 
The variance of many integer series runs higher than can be modeled by the Poisson 
distribution, where the ratio of the variance to the mean is unity. For instance, the 
mechanical failures that require a certain spare part may be accurately modeled by a 
Poisson distribution, but orders for the part may not reflect current failures. The parts may 
be inventoried by an intermediate distributor, or the end user may buy more than is 
needed immediately. The result is that, while the mean of the parts orders matches the 
mean of the failures, the orders are more variable. The negative binomial distribution 
allows us to model such data. 

The negative binomial distribution ranges over the integers {0,1,2,...}. The probability 
that exactly x events occur is given by the following formula. 
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This is the formula for the probability of x failures before the yth success in a sequence of 
Bernoulli trials in which the probability of success at each trial is p. In Forecast Pro, we 
regard the negative binomial distribution in a more empirical way. It is flexible enough to 
model many discrete business series that are not modeled well by the Poisson 
distribution. 

The parameters to be fitted to the data consist of y, an integer which assumes values in 
the range {1,2,3,...}, and p, which lies in the interval from 0.0 to 1.0. These two 
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parameters are fitted to the data by using the facts that the mean of the distribution is y(1-
p)/p while its variance is y(1-p)/p2. Thus the ratio of the mean to the variance is p. The 
mean of the series is estimated via simple exponential smoothing, as with the Poisson 
distribution. We assume that the ratio of the variance to the mean is a constant, which we 
also estimate from the data. 

This gives us the distribution of x at the end of the historic data. The point forecasts equal 
the final estimate of the mean. The confidence limits are computed by using the formula 
for f(x) as a function of x and the two fitted parameters. 

Croston’s Intermittent Demand 
Model 
Description 

Much product data, especially for lower volume items, are intermittent in nature. For 
many, or even most periods, there is no demand at all. For periods where there is some 
demand, it is randomly distributed independently or nearly independently of the demand 
interval. This might be the case for spare parts that are usually ordered in batches to 
replenish downstream inventories. The Poisson and negative binomial distributions do 
not usually fit such data well because they link the zeroes and non-zeroes as part of the 
same distribution. 

Croston [1972] proposed that such data be modeled as a two-step process. He assumed 
that the demand intervals were identically independently distributed (iid) geometric. This 
is equivalent to assuming that the probability that a non-zero demand occurs in any given 
period is iid Bernoulli, as though by the flip of an unfair coin. He further assumed that the 
distribution of successive demands was iid normal. 

The alternative model for data this messy is usually simple exponential smoothing. This 
yields horizontal forecasts at a level fitted adaptively to the data. Willemain et al. [1994] 
examined the performance of a variant of the Croston model relative to that of 
exponential smoothing, and found it markedly superior in forecast accuracy, both for 
simulated and real data, even in the presence of autocorrelation and cross-correlation 
between demand size and demand interval. 

The variation that Willemain et al. introduced was the substitution of the log normal 
distribution for the normal distribution for successive order sizes. This is sensible for 
most data because the probability of non-positive demand size is zero. However, it cannot 
be applied to demand data that sometimes goes negative, as it sometimes does when a 
company registers returns as negative demand. 

Implementation 

Two basic models are implemented in Forecast Pro—the Croston Model as originally 
implemented and the Willemain variant. The Willemain variant is always selected unless 
there are occasional negatives in the historic data. If numerous data points are negative, 
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the Croston model is tagged as inappropriate, as it also is when the vast majority of the 
historic periods have a non-zero demand. 

The quantities that must be estimated from the data include the following. 

Probability of a demand in a given period, adaptively estimated to reflect 
conditions at the end of the historic data via simple exponential smoothing of the 
demand interval. The smoothing parameter is optimized, as is that for the mean 
order size, by minimizing the sum of squared fitting errors. 

Mean order size, adaptively estimated in the same way. 

Standard deviation of the demand size, estimated globally over the historic data 
set. 

The forecasts are computed as the product of demand probability and demand size. All 
three of the estimated quantities are used to compute the overall distribution function, 
from which the confidence intervals are computed. 

Curve Fitting 
Curve fitting is generally used to model the global trend of a data set. Although curve 
fitting is not as sophisticated as some of the other Forecast Pro forecasting 
methodologies, it can still be quite useful. Unlike some of the other methods, curve fitting 
may be used with short time series (the suggested minimum length is ten data points). 
Also, the program provides a quick and easy way to identify the general form of the curve 
your data are following. Be aware however, that curve fitting methods do not 
accommodate for or project seasonal patterns in a series. 

The curve fitting routine supports four types of curves—straight line, quadratic, 
exponential and growth (s-curve). You can let Forecast Pro choose the form of the curve 
or select it yourself.  

The automatic tries the four curves and selects the one that minimizes the BIC for the 
historic series. The equations for each curve are shown below (t=time). All of the 
coefficients of the model are selected to minimize the sum of the squared errors. 

Straight line:  bTa +=Y  

Quadratic:  2Y cTbTa ++=  

Exponential:  bTae +=Y  

Growth Curve: )(1
Y cTbe

a
−−+

=  
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Box-Jenkins Statistical Models 
Box-Jenkins is a powerful forecasting technique which, for appropriate data, often 
outperforms exponential smoothing. Traditionally, however, Box-Jenkins models have 
been difficult and time consuming to build. This has kept them from widespread 
acceptance in the business community. 

However, automatic algorithms such as those found in Forecast Pro, now allow 
forecasters to build Box-Jenkins models quickly and easily. As a result, they are now 
candidates for more widespread use. 

In the largest empirical studies of forecasting accuracy to date (Makridakis [1982], 
Makridakis [2000]), exponential smoothing outperformed Box-Jenkins overall, but in 
many specific cases, Box-Jenkins outperformed exponential smoothing. Ideally, a 
forecaster would switch between Box-Jenkins and exponential smoothing models, 
depending on the properties of the data. This is precisely what the Forecast Pro expert 
system is designed to do. 

Box-Jenkins models are built directly on the autocorrelation function (ACF) of a time 
series variable. Therefore, a prerequisite for Box-Jenkins is that the data should possess a 
reasonably stable autocorrelation function. If the autocorrelations are not stable, or the 
data are too short (say, fewer than 40 points) to permit reasonably accurate estimates of 
the autocorrelations, then exponential smoothing is the better choice. This avoids the 
principal pitfall of Box-Jenkins: fitting a complex model to chance historic correlations or 
outliers. 

Univariate Box-Jenkins cannot exploit leading indicators or explanatory variables. If 
these are important, then a multivariate method such as dynamic regression is a better 
choice. 

Forecast Pro implements the univariate ARIMA (AutoRegressive Integrated Moving 
Average) procedure described by Box and Jenkins [1976]. The models can be identified 
completely automatically by the program, or the user can interactively build a model, or 
test variations on the model selected by the Forecast Pro expert system. The program 
supports the multiplicative seasonal model described by Box and Jenkins. 

This section is intended to provide a background to the statistical methodology used in 
the program. Those who would like a more thorough coverage should consult Box and 
Jenkins’ classic theoretical textbook or Applied Statistical Forecasting [Goodrich 1989].  

Implementation of Box-Jenkins in 
Forecast Pro 
Automatic identification 

The program begins by performing a range-mean test to determine whether the log or 
square root transform should be applied to the data. 
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Next the program determines the simple and seasonal differencing necessary to render the 
data stationary. It uses an adaptation of the Augmented Dickey-Fuller test (see Goodrich 
[1989]). Then it computes approximate values for the parameters of a group of candidate 
models. Forecast Pro tests each model, and selects the one that minimizes the BIC 
criterion. 

Exhaustive fitting and examination of all low order ARIMA models would take an 
inordinate amount of computer time. Forecast Pro actually overfits a state space model, 
and uses it to generate approximate Box-Jenkins models quickly. Sometimes this method 
misses the minimum BIC by a slight amount, but it virtually never selects a bad model. 

Business Forecast Systems has compared its Automatic Box-Jenkins models with the 
published results from the M-competition, where an expert spent 20 minutes to identify 
each ARIMA model manually. Forecast Pro outperformed the Box-Jenkins expert at 
every forecast horizon.  

Business Forecast Systems recommends that you use Automatic identification routinely. 
Use Custom identification only when the program so suggests, or when you have a strong 
reason to reject the automatic model. 

Initialization 

Forecast Pro uses the method of back-forecasting to initialize Box-Jenkins models. This 
technique is described in Box and Jenkins [1976]. 

Parameter estimation 

Forecast Pro uses the method of unconditional least squares to obtain final parameter 
estimates. If necessary, the parameters are adjusted to ensure stationarity or invertibility  

Constant term 

By default, Forecast Pro uses a constant term only when an ARIMA model does not 
involve differencing. This is to avoid imposition of deterministic trends, which can lead 
to large forecast errors at longer horizons. You can, however, override the default if you 
want. In that case Forecast Pro will estimate the constant as though it were another 
parameter, so that you can check its statistical significance. 

Box-Jenkins Background 
Two statistical concepts are pivotal for understanding the Box-Jenkins modeling and 
dynamic regression, stationarity and autocorrelation. 

Stationarity 

A time series process is stationary (wide sense) when it remains in statistical equilibrium 
with unchanging mean, unchanging variance and unchanging autocorrelations. A 
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stationary process can be represented as an optimal autoregressive moving average 
(ARMA) model. 

Unfortunately, most business and economic time series are not stationary. There are many 
forms of nonstationarity, but the following forms are especially important. 

Nonstationarity in the mean. 

 The mean is not constant but drifts slowly, without consistent direction. 

 The time series is trended or cyclical. The trend is not constant but slowly drifts 
up and down. 

Nonstationarity in the variance. 

 The time series is heteroscedastic, i.e. the variance of observations around the 
mean is changing. 

One treats these cases by transforming the data to stationarity. Nonstationarity in the 
mean is removed by differencing. Nonstationarity in the variance is removed by applying 
a Box-Cox power transform. 

Autocorrelation function 

According to ARIMA statistical theory, a time series can be described by the joint normal 
probability distribution of its observations Y1, Y2, ... , YN. This distribution is 
characterized by the vector of means and the autocovariance function. 

The autocovariance of Yt  and its value Yt m+  at a time m periods later is defined by 

( ) ( )( )[ ]γ µ µµ t t µ t t µY Y E Y Y= = − −+ +cov , , 

where the operator E denotes statistical expectation, cov denotes the covariance, and µ is 
the expected value of Yt. Notice that the autocovariance function is a function of the time 
separation m, not the absolute times. This is an implicit assumption that the 
autocovariance function does not depend on the time origin t. In other words, the time 
series is stationary. If it is not, then its autocovariance function is not defined. 

Notice that γ 0 is the same as the variance σY
2 . The autocorrelation function is computed 

by dividing each term of the autocovariance function by the variance σY
2 : 
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The autocovariance function is a theoretical construct describing a statistical distribution. 
In practice, we can only obtain estimates of the true values. The generally accepted 
formula is 
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where  is the sample mean. The sample autocorrelation function is then given by 
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The sampling error of this estimate can be large, especially when the autocorrelations are 
themselves substantial. The estimates are also highly intercorrelated. Because of this, one 
must use caution in labeling particular correlations significant by visual examination of 
the sample autocorrelation function. 

The sample autocorrelation function displayed in Forecast Pro includes dashed lines at 
the 2σ limits, where σ is the approximate standard error of the sample autocorrelation 
coefficient, computed via the Bartlett [1946] approximation. The rate at which σ expands 
depends on the sample values of lower order autocorrelations. 

Description of the ARIMA Model 
Box-Jenkins1 models the autocorrelation function of a stationary time series with the 
minimum possible number of parameters. Since the Box-Jenkins dynamic model includes 
features (moving average terms) that dynamic regression does not, Box-Jenkins 
theoretically will produce the optimum univariate dynamic model. Therefore, even when 
a dynamic regression model might ultimately be selected, a preliminary Box-Jenkins 
analysis provides a useful benchmark for model dynamics. Since the procedure is quick 
and automatic, this puts very little analytic burden on the user. 

The Box-Jenkins model uses a combination of autoregressive (AR), integration (I) and 
moving average (MA) terms in the general AutoRegressive Integrated Moving Average 
(ARIMA) model. This family of models can represent the correlation structure of a 
univariate time series with the minimum number of parameters to be fitted. Thus these 
models are very efficient statistically and can produce high performance forecasts. 

The notation we will use is consistent with that used for exponential smoothing. 

N 
 
Number of historic data points  

m 
 
Forecast lead time (horizon)  

p 
 
Number of periods in a year  

Yt 
 
Observed value at time t  

                                                 
1Properly, Box-Jenkins refers to the modeling procedure that these two statisticians devised to fit ARIMA 
models to data, and not the model itself. In this document, however, we use the two terms almost 
interchangeably. 
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∇ t 
 
Differencing operator  

∇ s 
 
Seasonal differencing operator  

B Backward shift operator  

φi Autoregressive coefficient (lag i). In Forecast Pro this term is 
displayed as a[i]. 

φ(B) Autoregressive polynomial of order p  

Φi 
 
Seasonal autoregressive coefficient (lag i) In Forecast Pro this 
term is displayed as A[i]. 

Φ(Bs) 
 
Seasonal autoregressive polynomial of order ps 

qi 
 
Moving average coefficient (lag i). In Forecast Pro this term is 
displayed as b[i]. 

q(B) 
 
Moving average polynomial of order q 

Θi 
 
Seasonal moving average coefficient (lag i). In Forecast Pro this 
term is displayed as B[i]. 

Θ(Bs) 
 
Seasonal moving average polynomial of order qs 

 ( )Y mt  
 
Forecast for time t+m from origin t 

et 
 
One-step forecast error Y Yt t− −1 

ε t  
 
Normally independently distributed random shock. 

Differencing 

If a time series is not stationary in the mean, then the time series must first be transformed 
to stationarity by the use of differencing transforms. To describe differencing transforms 
we use the backward shift operator B, defined as follows. 

BY Yt t= −1  

B Y Ym
t t m= −  

This operator will be used in our discussion of ARMA processes. For instance, the 
differencing operator is defined as follows. 

( )∇ = −1 B  
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Autoregressive processes 

The AR(p) model is specified by the equation 

Y Y Y Yt t t t p tp
− − − − =− − −φ φ φ ε1 1 2 2 ...  (1) 

in which the dependent variable appears to be regressed on its own lagged values. This 
equation can also be represented in terms of the backward shift operator B as 

( ... )1 1 2
2− − − − =φ φ φ εB B B Yp

p
t t  

 
(2) 

and, if we adopt the notation φ(B) for the polynomial in B, it can be written succinctly in 
the form 

φ ε( )B Yt t=  
 

(3) 

Moving average processes 

The Moving Average process MA(q) is given by 

Y t t t q t q= − − −− − −ε q ε q ε q ε1 1 2 2  (4) 

or, alternatively, in the polynomial form 

Y Bt t= θ ε( )  
 

(5) 

The pure moving average process MA(q) is virtually never observed in real world data. It 
describes the unlikely process whose autocorrelations are nonzero for q lags, and zero 
thereafter. 

Moving average terms are, in practice, used only in conjunction with differencing or 
autoregressive terms. In that case, they are invaluable. They induce data smoothing just 
like that of exponential smoothing. 

ARMA and ARIMA processes 

The AutoRegressive Moving Average process ARMA(p,q) combines the features of the 
AR(p) and MA(q) processes. In polynomial form, it is given by 

φ θ ε( ) ( )B Y Bt t=  
 

(6) 

Thus the AR(p) process is the same as ARMA(p,0) and the MA(q) process is the same as 
ARMA(0,q). 

Any stationary time series can be modeled as an ARMA(p,q) process. Any time series 
that can be made stationary by differencing d times can be modeled as an ARIMA(p,d,q) 
process. The ARIMA(p,d,q) model is given by the following equation. 

φ θ ε( )( ) ( )B B Y Bd
t t1− =  

 
(7a) 
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This is the most general nonseasonal Box-Jenkins model. 

Deterministic trends 

By default, Forecast Pro does not include a constant term in an ARIMA model except 
when the model does not involve differencing. If you dictate that a constant term be used 
the equation for the model now takes the form shown in equation (7b). 

φ θ ε( )( ) ( )B B Y B cd
t t1− = +  

 
(7b) 

The effect of a constant term is to introduce deterministic trending into your model, in 
addition to its other properties. If you have differenced once, the trend is linear; if you 
have differenced twice, it is quadratic. 

This is usually undesirable because it extrapolates the global trend of the historic data 
indefinitely into the future, even when the current trend is slight. This usually produces 
poor forecast accuracy for longer horizons. Business Forecast Systems has confirmed this 
effect by testing over the 111 Makridakis time series. 

Seasonal Models 
Equation (7a) is adequate to model many seasonal series, provided that the polynomials 
“reach back” one or more seasonal periods. This means that either p or q (or both) must 
equal or exceed the seasonal period s. Since all intervening terms would also be included, 
such a model is not parsimonious, i.e., it would contain unnecessary coefficients to be 
estimated. This is often damaging to predictive validity of the model.  

On the other hand, we might consider a seasonal version of equation (7) in which the 
backward shift operator B is replaced by its seasonal counterpart Bs. The resulting 
equation is 

Φ Θ( )( ) ( )B B Y Bs s D
t

s
t1− = ε  

 
(8) 

where the polynomials q and Θ are of orders P and Q respectively. This is the 
ARIMA(P,D,Q)s model. It relates the observation in a given period to those of the same 
period in previous years, but not to observations in more recent periods. 

The most general seasonal model includes both seasonal and simple ARIMA models at 
once. The following equation describes the multiplicative seasonal ARIMA model. 

φ θ ε( ) ( )( ) ( ) ( ) ( )B B B B Y B Bs d s D
t

s
tΦ Θ1 1− − =  

 
(9) 

It is usually symbolized as ARIMA (p,d,q)(P,D,Q). 
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Selecting Model Orders 
The hardest part of Box-Jenkins modeling is deciding which ARIMA(p,d,q) model fits 
the data best, i.e. in identifying the degree of differencing d, the AR order p, and the MA 
order q. Much of Box and Jenkins [1976] is devoted to this so-called “identification” 
problem. The Forecast Pro expert system, in fact, identifies the model automatically . 
Therefore, the remainder of this section, in which the original Box-Jenkins procedure is 
presented, is inessential. 

The original Box-Jenkins procedure depends upon graphical and numerical analysis of 
the autocorrelation function and the partial autocorrelation function. It is a pattern 
recognition procedure that requires skill and patience to learn. We will discuss only the 
nonseasonal case. 

Degree of differencing 

The identification procedure begins by determining the degree of differencing d that is 
required to make the original data Yt stationary. This is done through examination of the 
autocorrelation function rk. 

The first few lags of the autocorrelation function of the raw data Yt are inspected; if these 
die out relatively quickly, then no differencing is required, i.e. d=0. If not, then the 
original data are replaced by its first difference ∇Yt and the process is repeated. If the 
autocorrelation function of the differenced data dies out quickly, d=1. If not, the data are 
differenced a second time to obtain ∇2Yt . This process is repeated until, for some d, the 
autocorrelation function of the multiply differenced data does die out quickly. In practice, 
d is rarely greater than 2. 

Once the degree of differencing is determined, the remainder of the analysis deals with 
the stationary series ∇d

tY . If d is zero, these are the original data. 

Autoregressive order 

The autoregressive order p is determined by inspection of the sample partial 

autocorrelation function φkk . We will motivate the odd notation and the definition of this 
function through a thought experiment. 

Suppose that the process is thought to be purely autoregressive (q=0). Then a rational 
strategy to determine p would be to compute a regression of Yt on its first lag, then on its 
first two lags, and so on until the last lag introduced into the regression turns out not to be 
statistically significant. This is determined by a statistical test on φkk , which is defined as 
the coefficient of Yt k−  in a regression on Y Y Yt t t− − −1 2 1, ,..., , i.e. the k’th coefficient of the 
k’th regression. 

Actually, a fast recursive algorithm is used instead of performing so many regressions. A 
graph is presented of the first forty-eight lags so that the AR order can be determined. If 
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the process is ARIMA(p,d,0), then the partial autocorrelation function dies abruptly after 
p lags. 

Moving average order 

A pure moving average process ARIMA(0,d,q) exhibits the same behavior in the 
autocorrelation function that the autoregressive process ARIMA(p,d,0) does in the 
partial autocorrelation function. In other words, if the process is ARIMA(0,d,q), then the 
sequence r

k
 is large for k<q+1 and small for k>q. Thus the autocorrelation function is 

used for MA processes in the same manner as the partial autocorrelation function for AR 
processes. 

The functions r
k
 and φkk  also exhibit similar behavior for ARIMA(p,d,0) and 

ARIMA(0,d,q) processes, respectively. Instead of abruptly cutting off at p and q, 
respectively, these functions tail off smoothly in exponential decay or exponentially 
damped sine waves. By examining both functions, the forecaster can determine the orders 
of pure AR and MA processes. 

Mixed processes ARIMA(p,d,q) are more complex. Neither the partial autocorrelation 
function nor the autocorrelation function abruptly dies out. Instead, the autocorrelations 
remain large for k≤q+1 and die out exponentially thereafter. The partial autocorrelations 
remain large for k<p+1 and die out for k>p. Manual identification of mixed ARIMA 
processes is often very difficult. 

There are two severe problems with this procedure for order identification. 

First, even when the data really does fit an ARIMA process, the sample 
autocorrelations used to identify the process can be very different from the 
theoretical ones due to sampling variation. 

Second, the actual data usually contain outliers and other unmodelable features 
that can significantly distort the autocorrelation and partial autocorrelation 
functions. It is our judgment that the Box-Jenkins procedure should be used only 
as the very roughest guide. 

We recommend that you fit an automatic Box-Jenkins model first. Then, if you suspect 
that you can find a better model, you can try variations of the automatic model. You can 
use the BIC criterion to make a final decision. Note that the Forecast Pro automatic 
identification method has bested human experts in several academic studies. 

Dynamic Regression 
Forecast Pro dynamic regression supports the development of forecasts that combine 
time-series-oriented dynamic modeling and the effects of explanatory variables or leading 
indicators. The conventional regression model is enhanced by including support for an 
extension of the Cochrane-Orcutt autoregressive error model, and for the use of lagged 
dependent and independent variables. Forecast Pro does not support the development of 
simultaneous equation models. 
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Dynamic regression should be used when (1) the data are long enough and stable enough 
to support a correlational model (2) explanatory variables result in a definite increase in 
accuracy of fit and (3) reliable forecasts for the explanatory variables are available. 
Remember that complex models often produce forecasts that are less accurate than those 
from simpler models, even though they may fit the historic data better. 

Description of Dynamic Regression 
Model 
The ordinary least squares dynamic regression model takes the form 

P B Y X et t t( ) = +β  
 

(1) 

where the errors e
t are independently identically normally distributed. The symbols in this 

equation and the equations to follow are defined in the table below. 

N Number of historic data points  

M Forecast lead time (horizon)  

s Number of periods in a year  

Yt Observed value at time t  

Xit 
 
Observed value of i’th explanatory variable at time t  

B 
 
Backward shift operator  

φi 
 
Autoregressive coefficient of Yt-i 

ρi 
 
Autoregressive coefficient of et-i 

βi 
 
Coefficient of Xi 

 ( )Y mt  
 
Forecast for time t+m from origin t 

et One-step forecast error Y Yt t− −1 

The lags of the dependent variable are contained in the polynomial P(B), just as in the 
Box-Jenkins model. The dynamic regression model differs from Box-Jenkins in two 
important ways: 

It includes one or more independent variables, which drive the process. For 
example, advertising or promotion usually drive sales. 
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Equation (1) does not include moving average terms, which are often very useful 
in Box-Jenkins. Regression models will therefore be less parsimonious than Box-
Jenkins for some processes. 

Thus dynamic regression is stronger than Box-Jenkins in one way and weaker in another. 

It will often be found that the errors obtained from equation (1) are correlated, contrary to 
assumption. This can be determined by examination of diagnostics in the dynamics 
module. This may indicate that additional lags of the dependent variable should be 
introduced, or additional independent variables or new lags of existing independent 
variables should be introduced, or both. 

The generalized Cochrane-Orcutt model is an alternative way to improve model dynamics 
that often requires estimation of fewer new parameters. In the Cochrane-Orcutt model, 
equation (1) is replaced by the pair of equations 

P B Y Xt t t( ) = +β ν  
 

(2) 

R B et t( )ν =  
 

(3) 

in which the raw residuals are correlated via an autoregressive process specified by the 
polynomial R(B) in the backward shift operator. Equations (2) and (3) can be rewritten as 
a single equation 

R B P B Y R B X et t t( ) ( ) ( )= +β  
 

(4) 

Dynamic Regression Diagnostics 
A regression model is far harder to fit to the historic data than a Box-Jenkins model for 
several reasons. First, the dynamic portion of the model (lagged dependent variable and 
Cochrane-Orcutt terms) must be determined term by term on the basis of hypothesis 
testing, rather than automatically. Second, there are no moving average error terms in 
dynamic regression; if they are needed they must be approximated by additional 
complexity in the dynamic regression model. Third, the explanatory portion of the model 
adds an additional layer of complexity over the univariate case. Moreover, the lag 
distribution of the explanatory variables must also be considered. As a result there may be 
hundreds of specific terms that should be considered in a particular model. 

This complex situation calls for an orderly and systematic strategy. The Forecast Pro 
regression diagnostics are modularized into three batteries of tests aimed at two phases of 
the model development process. These phases are: 

 Development of the dynamic model 

 Development of the explanatory model 

The dynamic regression test battery provides specific diagnostics for the current model. 
Most of the diagnostics are chi-squared statistics based on Lagrange multiplier tests 
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(Engle [1984]). Lagrange multiplier tests are asymptotically equivalent to the more 
commonly used Wald tests and likelihood ratio tests. The following paragraphs describe 
the tests. 

Each diagnostic tests for a specific deficiency in the model. However, they are not 
independent of each other. A deficiency in one specific area can cause several other test 
statistics to become significant as well. Because of this it is best to find the test where the 
null hypothesis is rejected at the highest probability, and make that one specific change. 
Then, reexamine the diagnostics for the altered model. 

Dynamics specification 

The first group of diagnostics tests for inclusion of Cochrane-Orcutt autoregressive error 
terms. The tests are described below. 

_AUTO[-n]. The alternative hypothesis is that an error autocorrelation of lag n 
should be added to the model. Forecast Pro performs a test for each of the first 
twelve lags and the first two seasonal lags. A test is omitted if the term is already 
in the model. 

The remaining dynamics tests check for inclusion of lagged dependent variables. 

 Y[-n] test. The alternative hypothesis is that the n’th lag of the dependent variable 
should be added to the model. Forecast Pro performs a test for each of the first 
twelve lags and the first two seasonal lags. It uses the actual name of the variable. 
A test is omitted if the term is already in the model. 

The program recommends that some specific new term be added to the model, unless all 
tests are insignificant at the level 0.01. 

Variable specification 

The variable specification tests check for problems in specification of the independent 
variables. The tests are described below. 

Excluded variables. A Lagrange multiplier test is computed for each inactive 
variable on the script. 

 Time trend. The alternative hypothesis is that a linear time trend improves the 
model. A significant test does not necessarily indicate that a time trend variable 
should be added. The problem often lies with model dynamics or by the exclusion 
of some other variable. 

 Constant term. The alternative hypothesis is that a constant term improves the 
model. 
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 Lagged independent variables. A test is made for each independent variable 
now present in the model. The alternative hypothesis is that its first lag should 
also be in the model. 

Custom excluded variable tests 

The alternative hypothesis in the excluded variables test described above is that the model 
should include the single additional variable specified. The custom excluded variables 
test option allows you to test combinations of excluded variables. 

It is not uncommon that combinations of variables will be jointly significant even when 
they are separately insignificant. 

Bass Diffusion Model 
The Bass diffusion model is a new product forecasting technique that can be used with or 
without historic demand data. The Bass model is most often used to forecast first time 
adoptions of new-to-world products. 

The model tries to capture the adoption rates of two types of users—innovators and 
imitators. Innovators are early adopters of new products and are driven by their desire to 
try new technology. Imitators are more wary of new technology—they tend to adopt only 
after receiving feedback from others. 

))(()( ∑∑∑ −+−= t
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(1) 

Yt Number of adopters at time t  

m Number of potential adopters over entire life cycle 

p Coefficient of Innovation  

q Coefficient of Imitation  

The Bass model can be written in several different forms. The form in equation (1) is 
adapted from Kahn[2006]. Notice the plus sign on the left hand side of the equation 
separates the innovation component from the imitation component. Conceptually 
equation (1) can be thought of as: 

Yt = (p * Remaining Potential) + (q * Current Adopters * Remaining Potential) 
 

(2) 

Equation (2) illustrates how p defines the strength of the Innovation Effect and q defines 
the strength of the Imitation Effect. 

If you have 5 or more historic data points, p, q and m can be fit to the data using 
regression. Consult Bass[2004] for details. 



Dynamic Regression Diagnostics  33 

With fewer than 5 historic data points , p, q and m must be input into the model. In these 
instances, the coefficients could be set using values from an analogous product’s model. 
There is also a considerable body of literature on the Bass model including published 
coefficients for different types of technologies. Consult Lilien, Rangaswamy and Van den 
Bulte[1999]. 

Forecasting By Analogy 
By Analogy is a new product forecasting technique that can be used with or without 
historic demand data. The approach is sometimes also referred to as “looks like” analysis. 

The concept is a very simple one. You are launching a new product and you expect the 
initial sales pattern to be similar to an analogous product’s initial sales pattern or to a 
“launch profile” that you’ve created.  

If the product has not yet launched (i.e., there is no historic data available) then you must 
supply an estimate of the initial sales over a specific period of time (the “launch total” 
over the “launch horizon”). Forecast Pro will then create the forecast by proportionally 
allocating the launch total over the launch horizon using the analog series to define the 
proportions. 

If historic data exists, Forecast Pro will calculate and display an “estimated launch total”. 
To do so, it first uses the analog series to determine the cumulative percentage of the 
launch total that the available historic data represent, it then assumes that the sum of the 
available history equals that cumulative percentage and estimates the launch total. For 
example, if there are 5 historic demand observations that sum to 500 and the sum of the 
first 5 periods of the analog series corresponds to 40% of the analog series’ launch total, 
then 500 is assumed to equal 40% of the estimated launch total and thus the estimated 
launch total equals 1,250. 

If historic data exists and you specify that the estimated launch total should be used to 
generate the forecast, Forecast Pro will create the fitted values and forecasts by 
proportionally allocating the estimated launch total over the launch horizon using the 
analog series to define the proportions. 

If historic data exists and you specify a launch total to be used, Forecast Pro will subtract 
the sum of the available history from the specified launch total to ascertain the cumulative 
forecast needed so that the sum of the available history and forecast will equal the 
specified launch total. It then spreads the needed cumulative forecast value using the 
analog series’ forecast values to define the proportions. The same proportionality factors 
used to generate the forecasts are then used to generate the fitted values—thus the fitted 
values represent the historic volume that would normally be associated with the forecast. 
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Model Statistics 
Within-sample statistics are displayed each time a model is fitted to the data. Out-of-
sample statistics are displayed whenever a hold out sample is used. Each statistic is listed 
below: 

Sample size. The number of historical data points used to fit the model. Operations that 
discard data points, (e.g., differencing, inclusion of lagged variables, etc.) can reduce this 
statistic. 

Number of parameters. The number of fitted parameters (coefficients) in the model. 

Mean. The sample mean (average) for the historical data. 
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Standard deviation. A measurement of the dispersion of the historical data around its 
mean. 
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R-square. R-square is the fraction of variance explained by the model. 
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Adjusted R-square. The adjusted R-square is identical to the R-square except that it is 
adjusted for the number of parameters (k) in the model. 
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Durbin-Watson. The Durbin-Watson d-statistic is used to test for correlation of adjacent 
fitted errors, i.e. for first-lag autocorrelation. If T is the number of sample points and et  is 
the fitted error at point t, then d is computed as follows. 
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While the d-statistic is easy to compute, it is hard to interpret. 

The null hypothesis is that the first-lag autocorrelation is zero. One looks up the Durbin-
Watson bounds dL  and dU  for sample size T and significance α in a table. The null is 
accepted if d dL<  and rejected if d dU> . If d d dL U< < , then the test is inconclusive. Our 
recommendation, with which many disagree, is to reject the null only when the test is 
conclusive. 
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Another problem is that the d-statistic is not strictly valid for models with lagged 
dependent variables. In that case, many statisticians use the Durbin h-statistic instead. The 
Durbin h is not reported in Forecast Pro. 

We recommend that you rely on the Ljung-Box test, which is straightforward, and on 
visual examination of the error autocorrelation function. 

Ljung-Box test. The Ljung-Box Q-statistic, which is used to test for overall 
autocorrelation of the fitted errors of a model, is a statistical improvement on the Box-
Pierce (portmanteau) test. If T is the number of sample points, ri  is the i’th 
autocorrelation coefficient, and L the number of autocorrelation coefficients, then Q is 
computed as follows. 
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The statistic is a weighted sum of squared autocorrelations, so it is zero only when every 
autocorrelation is zero. The more autocorrelation, the greater the size of Q. The weights 
are selected to make Q approximately ( )Χ 2 L n− , i.e. Chi-square with L-n degrees of 
freedom. 
 
Forecast error. The standard forecast error is the root mean square of the fitted errors 
adjusted for the number of parameters (k) in the model. It is used to compute the 
confidence limits of the forecasts, but, realistically, it is usually an overly optimistic 
estimate of true out-of-sample error.  

kn
FY

FE tt

−

−
= ∑ 2)(

 

BIC. The AIC (Akaike Information Criterion) and the BIC (Bayesian Information 
Criterion) are the two order estimation criteria in most common use. A specific model is 
selected from a model family by finding the model that minimizes the AIC or BIC. 

Either statistic rewards goodness-of-fit, as measured by the root mean square error s, and 
penalizes for complexity, i.e. the number of parameters n. Koehler and Murphree [1986] 
showed that, for series from the M-competition, the BIC leads to better out-of-sample 
forecast performance and, for this reason, Forecast Pro uses and displays the BIC. 

There are several equivalent versions of the BIC, related to each other by transforms. In 
Forecast Pro, we use the following equation, in which T represents the sample size. 

BIC sT
n

T= 2  

This version of the BIC is scaled the same as the standard forecast error. It can very 
loosely be interpreted as an estimate of out-of-sample forecast error. 

The BIC can be used to compare different models from the same family, and for the same 
data. Since it is scaled to the standard forecast error, it is meaningless as an absolute 
criterion of merit. 
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MAPE. The MAPE (Mean Absolute Percentage Error) is used to measure within sample 
goodness-of-fit and out-of-sample forecast performance. It is calculated as the average of 
the unsigned percentage errors. 
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SMAPE. The SMAPE (Symmetric Mean Absolute Percentage Error) is a variation on the 
MAPE that is calculated using the average of the absolute value of the actual and the 
absolute value of the forecast in the denominator. This statistic is preferred to the MAPE 
by some and was used as an accuracy measure in several forecasting competitions. 

∑ +
−

=
2/|)(|

||1

tt

tt

FY
FY

n
SMAPE  

RMSE. The RMSE (Root Mean Square Error) is used to measure within sample 
goodness-of-fit. It is calculated as the square root of the average of the squared errors. 
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MAD. The MAD (Mean Absolute Deviation) is used to measure within sample 
goodness-of-fit and out-of-sample forecast performance. It is calculated as the average of 
the unsigned errors. 
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MAD/Mean Ratio. This MAD/Mean ratio is an alternative to the MAPE that is better 
suited to intermittent and low-volume data. Percentage errors cannot be calculated when 
the actual equals zero and can take on extreme values for low volume data. These issues 
become magnified when you start to average MAPEs over multiple time series. The 
MAD/Mean ratio tries to overcome this problem by dividing the MAD by the Mean—
essentially rescaling the error to make it comparable across time series of varying scales. 
The statistic is calculated exactly as the name suggests—it is simply the MAD divided by 
the Mean. 
 
GMRAE. The GMRAE (Geometric Mean Relative Absolute Error) is used to measure 
out-of-sample forecast performance. It is calculated using the relative error between the 
naïve model (random walk) and the currently selected model. A GMRAE of 0.54 
indicates that the size of the current model’s error is only 54% of the size of the error 
generated using the naïve model for the same data set. 

Box-Cox Power Transforms 
It is assumed in both Box-Jenkins and dynamic regression that the error process e

t
 is 

independently identically normally distributed. Heteroscedasticity of the error process, i.e. 
changing variance, is a violation of this assumption. The effect of heteroscedasticity is not 
so damaging as autocorrelation because it does not bias estimates of the coefficients. Its 
main effect is to reduce statistical efficiency, so that the effect of sampling errors is 
greater. 
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Sometimes heteroscedasticity can be eliminated or reduced by transforming the 
dependent variable. The transformed variable is forecasted, then back transformed to the 
original distribution. The most important are the power transforms analyzed by Box and 
Cox [1964]. The following equations are used to transform the original data Yt to the 
transformed data Yt(λ). 
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  ( )λ ≠ 0  

Yt(0)=ln(Yt) 

The parameter λ specifies the power to which the data are raised, except when it is zero. 
In that case, Yt is replaced by its logarithm. The first of the two equations includes 
constant terms to make the transform a continuous function of λ. 

The Box-Cox power transform can be applied only to positive data. 

Safety Stocks 
Forecast Pro generates safety stock calculations in addition to point forecasts and 
confidence limits. This capability is most often used in setting inventories which are 
replenished only at certain variable or fixed intervals. 

Inventory control analysis requires the manager to balance inventory holding costs, 
reorder costs and other factors to determine economic order sizes and reorder points to 
maintain a desired service level at minimum cost. The analysis must take into account the 
lead time between placing an order and placing the units in stock. Although such analyses 
can become very complex, most of them require answering a question similar to the 
following. 

How much stock do I need to maintain a service level of 95% if the reorder lead time is 
four weeks? 

At each point of time, the manager needs enough stock so that the total sales for the next 
four weeks will exceed the stock level only five percent of the time. It is easy to calculate 
the expected demand over the four week period—just add the forecasts over the four 
weeks. The difficulty lies in computing the probability that sales will exceed the 
cumulative forecast by some certain amount. To determine this mathematically is a 
complex problem that depends upon the details of the statistical forecast model. Most 
MRP systems use a very crude approximation to solve this problem and really must, since 
the system does not know anything about the statistical forecast model. The difficulty of 
the calculation lies in taking into account the serial correlations of sales from point to 
point over the reorder cycle. 

Forecast Pro is unique in providing a rigorous statistical solution to this problem. It does 
so by converting the model to an equivalent but different form called the Wold 
representation. This is the key to determining the statistical distribution of the cumulative 
forecast. Consult Wold[1938] for details of the computation. 
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But there is one caveat, the computation assumes that the statistical distribution of future 
sales is in fact correctly captured by Forecast Pro. This is never absolutely true, so the 
safety stocks will be in error to the extent that the Forecast Pro model does not actually 
capture the true model. 

Consider the following example: 

Date 5% Lower Forecast 95% Upper 
2009-35 640 757 875 
2009-36 654 774 895 
2009-37 642 761 880 
2009-38 574 680 787 
2009-39 572 679 786 
2009-40 531 631 731 

The forecast for each week represents the mean of all possible futures. Put another way, it 
is equally likely, according to the model, that the actual value will be above or below the 
forecast. 

The upper and lower confidence limits provide information about the spread around the 
forecast for a given period. The 95 percent upper confidence limit for week 35 is 875. 
Thus, according to the model, actual sales for week 35 should fall at or below 875, 95% 
of the time. The 95 percent upper confidence limit for week 38 is 787. Thus, according to 
the model, actual sales for week 38 should fall at or below 787, 95% of the time. 

Notice that forecasts and confidence limits do not take into account lead times. Therefore, 
they cannot be used to answer our question, “How much stock do I need to maintain a 
service level of 95% if the reorder lead time is four weeks?” 

 

Lead time DDLT 95% Safety Reorder Point 
1 757 117 875 
2 1,532 174 1,706 
3 2,292 215 2,507 
4 2,973 244 3,217 
5 3,652 269 3,920 
6 4,283 289 4,572 

The expected Demand During Lead Time (DDLT) is the cumulative forecast. Thus, for a 
lead time of 4 weeks, the DDLT is 2973 (757+774+761+680). 

The safety stock is the excess stock needed, above and beyond the DDLT, to maintain the 
service level specified for the upper confidence limit percentile. The safety stocks are 
output for each lead time up to and including the forecast horizon. Thus, to determine the 
stock required for a four-week lead time, you would add together the DDLT and Safety 
Stock values for lead time 4 (2973+244=3217). This quantity is known as the Reorder 
Point. If your stock falls below the Reorder Point then you do not have enough stock to 
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satisfy the expected demand at the specified service level and need to obtain additional 
stock (e.g., to reorder). 

Outlier Detection and Correction 
An outlier is a data point that falls outside of the expected range of the data (i.e., it is an 
unusually large or small data point). If you are forecasting a time series that contains an 
outlier there is a danger that the outlier could have a significant impact on the forecast.  

One solution to this problem is to screen the historical data for outliers and replace them 
with more typical values prior to generating the forecasts. This process is referred to as 
outlier detection and correction. 

Correcting for a severe outlier (or building an event model for the time series if the cause 
of the outlier is known) will often improve the forecast. However if the outlier is not truly 
severe, correcting for it may do more harm than good. When you correct an outlier, you 
are rewriting the history to be smoother than it actually was and this will change the 
forecasts and narrow the confidence limits. This will result in poor forecasts and 
unrealistic confidence limits when the correction was not necessary. 

It is the authors’ opinion that outlier correction should be performed sparingly and that 
detected outliers should be individually reviewed by the forecaster to determine whether a 
correction is appropriate. 

Forecast Pro incorporates an automated algorithm to detect and (optionally) correct 
outliers.  

The detection/correction algorithm works as follows: 

1. The specified forecasting model is fit to the time series, the residuals (fitted errors) are 
generated and their standard deviation is calculated. 

2. If the size of the largest error exceeds the outlier threshold, the point is flagged as an 
outlier and the historic value for the period is replaced with the fitted value. 

3. The procedure is then repeated using the corrected history until either no outliers are 
detected or the specified maximum number of iterations is reached. 

In a multiple-level problem the detection is only performed on the end items (i.e., the 
nongroup level). If the correction option has been selected, after all end items are 
corrected, the group level totals are reaggregated to reflect the corrected values. 

Trading Day Effects 
In many cases, the sales or shipments of a product depends upon calendar effects such as 
the number of working days, the number of weeks in the period (4-4-5 data), or the 
number of weekend days. In more complex cases, each day of the week is associated with 
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a weight that describes its relative contribution to sales or shipments, so the weight for the 
month can be computed from the relative contributions of the days that fall into that 
particular month. 

Trading day effects of this kind can influence sales by as much as five to ten percent. 
Since it is one variable that can be computed accurately for the future as well as the past, 
it makes a good deal of sense to account for it. This will usually give a boost in accuracy 
at very little extra effort or expense. 

Forecast Pro supports a weighting transformation (\WGT=) that takes trading day effects 
into account in a very simple way. 

The trading day weights (both past and future), must be defined as a helper 
variable in a file supplied by the user. The data must span from the first historic 
data period to the last forecast period.. 

The actual historic values for a time series are adjusted by dividing through by the 
weight for each month. This gives estimates for the sales that would have 
occurred in the absence of trading day effects.  

Forecasts are prepared from the adjusted historic data. 

The forecasts are multiplied by the corresponding future trading day weights. 

The user must compute and supply to Forecast Pro Unlimited the appropriate trading day 
weights for each month (or quarter) 



41 

 

 
 

Methodology of Automatic Forecasting 

This chapter describes special methodological considerations that apply to automatic 
forecasting of hundreds or thousands of items. 

Introduction 
Much of the forecasting literature (and much of the available software) concentrates on 
forecasting time series in an R&D environment. The literature envisions the forecaster as 
intensely interested in just one or two complex time series, perhaps for long forecast 
horizons, and often with highly significant consequences. For example, one might be 
interested in forecasting the economic or social environment for a nuclear power 
generation plant. The forecaster is willing, under such circumstances, to invest 
considerable time and other resources to obtain the best available forecasting models, and 
might be willing to use extremely complex methodology. 

This emphasis on the R&D environment ignores the forecaster who needs to forecast 
hundreds or thousands of products, on a weekly, monthly or quarterly basis, perhaps for 
inventory control or production planning. In this case, the consequences of error in the 
forecasts for any particular product may be quite small, although the consequences for 
aggregate performance might be large. The methodology of Forecast Pro Unlimited, is 
directed squarely at this forecasting environment. 

Forecast Pro Unlimited is based on the fairly scanty published research and upon BFS 
research and experience. We will summarize some of the facts that have emerged from 
the research. 

The forecasting methods that succeed best are relatively simple ones. Product data is 
often so volatile that more complex models, no matter how well they fit the historical 
data, yield inferior forecasts. 
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When historic records are relatively long and not very noisy, there is a substantial payoff 
in matching the forecast model to each data set individually. 

On the other hand, many business time series are extremely noisy. The information in an 
individual historic record may not be sufficient to choose the best method reliably. 
Frequently, method A may appear to be superior to method B at one time, and inferior to 
it at another. In these cases, overall accuracy may be improved by selecting a model at the 
group level. This can be done by using the Forecast Pro Unlimited out-of-sample 
evaluation procedure. 

Forecasting performance and goodness-of-fit of a model to the historic data is certainly 
related, but the relationship is much looser than one would expect. 

Forecast Pro Unlimited includes extensions (discrete distributions, Croston’s intermittent 
data model and multiplicative error model) to the standard confidence limit methodology 
to make confidence limits more accurate. Nevertheless, confidence limits are only rough 
guides to real out-of-sample forecast performance. You can evaluate real out-of-sample 
performance by using the Forecast Pro Unlimited evaluation methodology. 

Classification of Time Series 
From the earliest days of forecasting systems for production and inventory control, it has 
been recognized that there are essentially three types of product time series. This 
stratification is based mainly on sales or production volume. 

Type A series are very high volume. These series are usually fairly regular, so statistical 
forecasting methods like those in Forecast Pro Unlimited perform well. However, these 
high volume items are also of great importance to the firm, and the consequences of 
forecast error can be significant. Thus, if there are not too many of them, it is wise to 
examine them interactively, and to make judgmental adjustments as appropriate. 

Type B series are of medium volume. Ordinarily, these series can be forecasted fairly 
accurately by the methods in Forecast Pro Unlimited. Since these items are not separately 
as crucial to the firm, they lend themselves well to automatic forecasting. Human 
intervention is usually required only when the forecasting software marks them as 
exceptional. 

Type C series are of lowest volume, and may include as many as 50% of the total. Many 
of these series will be mostly zeroes, with occasional small sales and, more rarely, a large 
sale. The percent error of forecasts of Type C series is often quite large, but the 
consequence of error is usually small. When automatic forecasting first emerged, Type C 
series were not usually forecasted at all. Instead, a default forecast (say zero or one) was 
used, to save computer time (then a scarce resource). Now that computation is cheap, 
methods like those in Forecast Pro Unlimited are likely to provide increased accuracy. 

Any of these groups can include rogue series, i.e., series that are so irregular as to be 
virtually unforecastable. Obviously, most rogue series are of Type C, so that their 
practical significance is usually not high. However, their influence on forecast 
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performance evaluations can be great, since evaluations usually depend upon percent 
error, not absolute error. The meaningfulness of forecast performance evaluation, 
discussed below, will be greatly enhanced if the evaluation is based upon a classification 
of series, and the identification of rogue series. 

Multiple-level Forecasting 
Multiple-level models apply to data which must be dealt with at several levels of 
aggregation. Product data, for instance, often involve SKU’s (stock keeping units), brands 
and lines. Forecast Pro Unlimited allows you to aggregate data into a hierarchy of groups, 
and to produce consistent forecasts at all levels of aggregation. 

Consider the product group ABC consisting of the sum of products A, B and C. If one 
forecasts each series independently, the forecast of ABC will differ from the sum of the 
forecasts of products A, B and C. Often it is essential for the firm, however, to reconcile 
such hierarchical inconsistencies. 

There are two generally accepted ways to do this—top-down and bottom-up. You will 
need to use your knowledge of the products, or testing, to determine which method is 
superior. 

The top-down method forecasts ABC, A, B and C first, as a preliminary step. Then the 
forecasts of A, B and C are adjusted proportionately at each step of time, to insure that 
ABC = A+B+C. The bottom-up method is to forecast A, B and C, and to construct the 
forecast for ABC by summing the forecasts for A, B and C. Neither method is superior to 
the other under all circumstances. If the items are very similar, like sizes and colors of a 
product, then the top-down approach is probably more accurate. If they are disparate, like 
a household product and a business product, then the bottom-up method is more likely to 
succeed. 

Many companies employ a disaggregation procedure instead of forecasting each item at 
the lowest level. For example, the distribution of shoe sizes and colors is relatively 
constant from style to style. It therefore makes sense to forecast at the style level and then 
to apply the overall size-color break down to obtain SKU level forecasts. The 
disaggregated SKU forecasts would almost certainly be more accurate than those obtained 
directly from SKU level data because of its extreme noisiness. 

Bunn and Vassilopoulos [1993] showed that it is often more accurate to extract seasonal 
indexes at the group level, use them to deseasonalize the item level data, forecast the 
resulting nonseasonal series and reseasonalize the forecasts. 

For instance, suppose that the lowest level item is a soft drink in a certain size and 
container type (glass, plastic, aluminum, etc.). One would extract seasonal indexes after 
aggregating the data over size and container type. This is especially useful if the data 
includes some new container sizes without adequate history to calculate seasonality 
independently. Another situation where this capability is important, is when products are 
constantly being replaced with new models. For example, the average life span of a 
computer printer model is 18 months, making independent estimation of the seasonal 
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indexes very tenuous. Extracting seasonality at the group level (containing all models past 
and present) and applying the indexes to the current models results in more reliable 
estimates. 

Forecast Pro Unlimited makes it easy to apply top-down seasonality. One merely marks 
the group with the modifier \INDEXES to compute both seasonal and event indexes at 
that level. 

Although the above examples all use two levels of aggregation, Forecast Pro Unlimited 
allows you to define as many levels as you desire. Any combination of top-down and 
bottom-up reconciliation can be used. 

Forecast Pro Unlimited disaggregates in a series of steps. First the forecasts for a top-
down group are frozen. Then the first-generation component forecasts are adjusted so that 
they sum to their parent forecasts. Then those forecasts are frozen and used to adjust their 
component forecasts. This process continues until all item-level forecasts have been 
adjusted. 

Incorporation of Additional 
Information 
It will often be appropriate to adjust forecasts from Forecast Pro Unlimited judgmentally. 
This may be done to include information about orders that have been received, or which 
are expected; the effects of promotions; knowledge about external economic trends; 
product mix changes, etc. These are particular cases where the information available to 
the user is greater than that available to Forecast Pro Unlimited. 

In other cases, i.e., when the additional information possessed by the manager is not clear, 
the effect of subjective intervention by the user may be counterproductive. Studies have 
shown that, although most managers believe that their subjective assessment is superior to 
quantitative projection, that is not always the case. As Fildes [1990] has put it, manager 
intervention is a “mixed blessing.” We advise the user to be cautious. 

In any case, user intervention is time consuming. In those research studies where 
subjective intervention provided improved accuracy, the managers typically used 
graphical analysis and fairly intensive consideration as their tools. Quick “eyeball” 
adjustments are not likely to contribute much to accuracy. 

Forecast Pro Unlimited offers a forecast adjustment facility to permit subjective 
intervention by the user. Both individual and group level forecasts can be adjusted in a 
variety of ways. 

Selection of Forecasting Method 
Forecast Pro Unlimited offers the user five basic forecasting methods, and a wide range 
of variations on these methods. The methods that are included were selected from among 
those few univariate forecasting models that are supported by the research, and which can 
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be automated without excessive computational burden. Although true multivariate 
methods are not feasible in automatic systems, Forecast Pro Unlimited does support event 
modeling which can accommodate promotional schedules and business interruptions. 

The five basic methods are simple moving average, exponential smoothing, Croston’s 
intermittent demand, discrete distributions and Box-Jenkins (ARIMA). Simple moving 
average is included only for use on very short data series, where it is infeasible to fit more 
complex models to the data. The Croston’s model is designed for data with numerous 
zeros. Discrete distributions (negative binomial and Poisson distributions) are for use on 
data whose values are small integers. The other two “methods,” exponential smoothing 
and ARIMA, are not actually single methods but, rather, families of methods. The 
member methods differ mainly in their accommodation of structural characteristics in the 
data like trend, seasonality and random noise. Choosing a method thus involves two 
steps: choosing a family and choosing a method from within the family. 

Empirical research studies such as the M-Competition have shown that there is no one 
single forecasting methodology that is most accurate in all cases. Fildes [1990] has shown 
that improvements in accuracy of 20% or more can be obtained by selecting the method 
that is most appropriate for a given data set. Thus the task of selecting a method is crucial 
for accuracy. 

Features such as data length, stability, trending and seasonality will often lead the 
experienced forecaster to favor one method over another. These factors may help the 
experienced forecaster form a “hunch” about the best method for a particular group of 
data. However, as Fildes [1990] has demonstrated, the best and most reliable way to fit 
the method to the data is through testing. That is why Forecast Pro Unlimited includes an 
expert selection algorithm to automatically select a method for each series and a facility 
for testing over a hold-out sample. 

Thus there are three approaches to selecting a method. The first is to allow the program’s 
expert selection algorithm to choose the models. The second is to allow the program to 
select a model after you have decided on a family of models. The third is to make the 
selection yourself after hold-out testing over your data (preferably all of it). 

Forecast Pro Unlimited’s expert selection is easy to use and works extremely well. The 
only disadvantages is that the algorithm is time consuming. Manual model selection 
allows you to consider more models during the experimentation stage. Although this step 
is time consuming, your forecast production runs will be substantially quicker. 

The following sections describe these processes in greater depth. However, they do not 
cover the statistical foundations of the forecast methods themselves. They concentrate 
instead on implementation as automatic methods, and on implications for use of Forecast 
Pro Unlimited. Background material on the five methodologies (simple moving average, 
exponential smoothing, Croston’s intermittent demand, discrete distributions and Box-
Jenkins) is presented in the next chapter. 
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Model Selection via Out-of-Sample 
Testing 
Instead of letting Forecast Pro Unlimited decide which forecast model to use for each 
series separately, you can specify it yourself by adding the appropriate modifiers to your 
script file. For example, \SIMPLE forces use of simple exponential smoothing, \HOLT 
forces use of the Holt model, and \EXSM=LA evokes additive Winters. These three 
options might be appropriate for nontrended, trended and seasonal data, respectively. 

The modifiers on a particular line of the script file apply to all items in the data file (or 
ODBC table) cited on that line. Therefore you should classify your items into different 
groups (and data files) with similar properties. In this way you can avoid fitting seasonal 
models to nonseasonal data, trended models to nontrended data, etc. Each data file is 
cited on a different line of the script, along with the model specification. 

At first thought, this procedure seems inferior to that of selecting a model separately for 
each item. In fact, however, overall forecasting performance may be markedly improved. 
That is because business data is often so irregular that the statistical information in a 
single series may not be sufficient to make a reliable choice of model. 

After we have classify the items into groups of like items, we must decide on a model that 
is best overall. This is done by using out-of-sample testing. 

To test a particular model, define a holdout sample on the dialog bar before creating the 
forecasts. This directs Forecast Pro Unlimited to withhold the specified number of time 
points from the end of the data, and to fit the model to the remaining data, which we call 
the “fit set.” The withheld data is called the “check set.”  

Forecast Pro Unlimited first forecasts the check set data from the last point of the fit set. 
Then it moves to the first point in the check set as a forecast base, and forecasts the 
remaining n-1 values. This process continues over all but the last point in the check set. 
Forecast errors are computed by subtracting the known true values of the check set from 
their forecasts. 

By rolling forward in this way, Forecast Pro Unlimited accumulates a total of n one-step-
ahead forecast errors from n different forecast bases, n-1 two-step-ahead errors from n-1 
different forecast bases, etc. Since forecast performance can change radically from one 
forecast base to another, the rolling forecast errors provide a much better picture of true 
out-of-sample performance than a “snapshot” taken at only one forecast base. 

The line-level summary statistics of the evaluation are written to the text window, where 
you can print it if you wish. The results from each model are summarized, so you can 
choose the model that performed best overall. You will probably make repeated runs, 
making small changes between each run. You might, for instance, reclassify your 
seasonal and nonseasonal series. Finally, of course, you will have the information you 
need to select the best methodology for your data. While this approach requires more 
initial work than using expert selection, it could pay off in terms of improved accuracy. 
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While this example focuses on different exponential smoothing models, you can also use 
the Forecast Pro Unlimited out-of-sample evaluation methodology to choose between 
automatic exponential smoothing and automatic Box-Jenkins, or to fine-tune some of the 
Box-Jenkins options. 
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Glossary 

This glossary contains definitions of the technical terms used in the main body of the text. 
A particular definition may involve terms that are defined elsewhere in the glossary. 

ACF 
(autocorrelation 
function) 

The ACF consists of the autocorrelations for lags 1, 2, 3, ... N. 
Forecast Pro displays the ACF as a correlogram, i.e. a bar chart of 
the autocorrelations arranged by lag. 

ARIMA model 
(AutoRegressive Integrated Moving Average) model. A family of 
sophisticated statistical models used by Box and Jenkins to 
describe the autocorrelations of a time series data. The symbol 
ARIMA(p,d,q) indicates a model involving p autoregressive 
terms and q moving average terms, applied to data that have been 
differenced d times. The Box-Jenkins technique involves (1) 
Identification of a particular ARIMA model to represent historic 
data; (2) Estimation of ARIMA model coefficients, (3) Statistical 
validation of the model; and (4) Preparation of forecasts. 

Autocorrelation 
The correlation of a variable and itself N periods later, and hence 
a measure of predictability. 

Base 
The forecast base is the time point from which forecasts are 
prepared. 
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BIC (Bayes 
information 
criterion) 

A model selection criterion proposed by Schwarz [1978]. Within 
a model family (e.g. exponential smoothing or Box-Jenkins), the 
model that minimizes the BIC is likely to provide the most 
accurate forecasts. Since models with many parameters often fit 
the historical data well, but forecast poorly, the BIC balances a 
reward for goodness-of-fit with a penalty for model complexity. If 
your current model yields the lowest BIC out of the models you 
have tested, Forecast Pro marks it with “Best thus far.” 

Box-Cox power 
transform 

Logarithmic or power transform of the data. Used to reduce or 
eliminate dependence of the local range of a time series on its 
local mean. 

 
 

Box-Jenkins 
Strictly speaking, the statistical technique developed by Box and 
Jenkins to fit ARIMA models to time series data. More loosely, 
the term refers to the ARIMA models themselves. 

Confidence 
limits 

A forecast is generally produced along with its upper and lower 
confidence limits. Each confidence limit is associated with a 
certain percentile. If the upper confidence limit is calculated for 
97.5% and the lower for 2.5%, then actual values should fall 
above the upper confidence limit 2.5% of the time, and below the 
lower confidence limit 2.5% of the time. These are often called 
the 95% confidence limits to indicate that the actual value should 
fall inside the confidence band 95% of the time. In practice, 
confidence limits tend to overstate accuracy. You can set the 
confidence limit percentiles in Configure. 

Dependent 
variable 

The variable you want to forecast. Strictly speaking this term only 
applies to regression modeling, where there are independent 
variables as well, but it is sometimes convenient to use it for the 
variable in univariate models as well. 

Differencing 
To difference a time series variable is to replace each value 
(except for the first) by its difference from the previous value. 
The seasonal difference replaces each value (except for those in 
the first year) by its difference from the value one year previously. 

Durbin-Watson 
test 

This statistic checks for autocorrelation in the first lag of the 
residual errors. It should be about 2.0 for a perfect model. 
Forecast Pro computes the Durbin-Watson d-statistic, which is, 
strictly speaking, applicable only for regressions that include a 
constant intercept term, but do not include lagged dependent 
variables. 

Exogenous 
variable 

An exogenous variable is an explanatory variable that can be 
treated as a time series of ordinary numbers. Practically speaking, 
independent variable means the same thing. 
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Exponential 
smoothing 

A robust forecasting method that extrapolates smoothed estimates 
of level, trend, and seasonality of a time series. 

Fit set 
The historic data set used to fit the parameters of a model, and as 
the base of extrapolation for the forecasts. 

Forecast error 
Standard error of the within-sample forecasts, computed by 
running the forecast model through the historic data. Used as an 
estimate of the one-step forecast error. 

Forecast horizon 
Number of periods you wish to forecast. 

Forecast 
scenario 

A forecast scenario extends the historic series of independent 
variables into the future. Dynamic regression forecasts are 
dependent on the forecast scenario. 

Lag 
The time difference between a time series value and a previous 
value from the same series. 

Ljung-Box test 
Checks for autocorrelation in the first several lags of the residual 
errors. If the Ljung-Box test is significant for a correlational 
model (Box-Jenkins or dynamic Regression) then the model 
needs improvement. The test is significant if its probability is > 
.99, in which case it is marked with two asterisks in the standard 
diagnostic output. 

Local level 
See local mean. 

Local mean 
The average level of a time series in the general neighborhood of 
a given point in time. Sometimes called the local level. 

Local trend 
The average rate of increase of a time series in the general 
neighborhood of a given point in time. 

MAD 
Mean Absolute Deviation. This measure of goodness-of-fit is 
calculated as the average of the absolute values of the errors. It is 
an important statistic in rolling simulation analysis. 

MAPE 
Mean Absolute Percentage Error. A statistic used to measure 
within sample goodness-of-fit and out-of-sample forecast 
performance. It is calculated as the average of the unsigned 
percentage errors. 

Model 
A forecasting model is an equation, or set of equations, that the 
forecaster uses to represent and extrapolate features in the data. 
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Model 
complexity 

Model complexity is measured by the number of parameters that 
must be fitted to the historic data. Overfitting, i.e., using too many 
parameters, leads to models that forecast poorly. The BIC can 
help to find the model that properly trades off goodness-of-fit in 
the historic fitting set, and its model complexity. 

Multivariate 
Involving more than one variable at a time. Dynamic regression is 
a multivariate technique. 

Residual error 
The difference between a predicted value and a true value in the 
fitting set, i.e. the fitted error. 

Robust 
A robust method is insensitive to moderate deviations from the 
underlying statistical assumptions. 

Root mean 
squared error 
(RMSE) 

A statistic that is used as an indication of model fit. It is 
calculated by taking the square root of the average of the squared 
residual errors. 

Seasonality 
Periodic patterns of behavior of the series. For instance, retail 
sales exhibit seasonality of period 12 months. Usually the 
forecaster must take seasonality explicitly into account during the 
model fitting process. 

Stochastic 
A process is said to be stochastic when its future cannot be 
predicted exactly from its past. In a stochastic process, new 
uncertainty enters at each point in time. 

Univariate 
Involving only one variable at a time. Exponential smoothing and 
Box-Jenkins are univariate techniques. 
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Adjusted R-square, 34 
ARIMA 

processes, 25 
Autocorrelation, 49 

function, 22, 27 
Autoregressive 

order, 27 
processes, 25 
terms, 23 

Backward shift operator, 25 
Bayes information criterion, 50 
Bayesian information criterion, 35 
BIC, 8, 35 
Box-Cox power transform, 50 
Box-Cox power transforms, 36 
Box-Jenkins, 20 

identification, 27 
initialization, 21 
mixed processes, 28 
parameter estimation, 21 
seasonal models, 26 

Check set, 46 
Cochrane-Orcutt, 30, 31 
Confidence limits, 8, 50 
Croston’s model, 18 
Curve Fitting, 19 
Dependent variable, 50 
Differencing, 24, 27, 50 
Durbin-Watson, 34 
Durbin-Watson test, 50 
Dynamic regression, 28 

diagnostics, 30 
dynamics, 31 
variable specification, 31 

Event effects, 4 
Event indexes, 4 
Exogenous variable, 50 
Exponential smoothing 

description, 3 
Holt, 6, 13 
simple, 5 
Winters, 6, 14 

Fit set, 46, 51 
Forecast error, 35 
GMRAE, 36 
Holdout sample, 46 
Judgmental forecasting, 44 
Lagged dependent variables, 29 
Level, 4 
Ljung-Box, 35 
Ljung-Box test, 51 
MAD, 36, 51 
MAD/Mean Ratio, 36 
MAPE, 36, 51 
M-Competition, 45 
Mean, 34 
Model complexity, 52 
Model selection, 8 
Moving average 

order, 28 
processes, 25 
terms, 23 
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Multiple-level forecasting, 43 
Multivariate, 52 
NA-constant level model, 15 
Negative binomial distribution, 17 
Number of parameters, 34 
Outlier detection, 39 
Parameter optimization, 8 
Partial autocorrelation function, 27 
Poisson distribution, 16 
Random events, 4 
Random shocks. See Random events 
Residual error, 52 
RMSE, 36 
R-square, 34 
Safety stocks, 37 
Sample size, 34 
Seasonal effects, 4 
Seasonal indexes, 4 
Seasonal simplification, 15 
Seasonality 

additive, 6 
multiplicative, 6 

Selecting a method, 44 
SMAPE, 36 
Standard deviation, 34 
Standard forecast error, 35 
Stationarity, 21, 24 
Stochastic, 52 
Time series 

classification of, 42 
hierarchies, 43 
rogue, 42 
types A,B,C,, 42 

Trading day effects, 39 
Trend, 4 
Univariate, 52 
 


	Contents
	Statistical Reference
	Expert Selection
	Simple Methods
	Exponential Smoothing
	Conceptual Overview
	Models of the Exponential Smoothing Family
	Implementation of Exponential Smoothing in Forecast Pro
	Statistical Description of Exponential Smoothing

	Discrete Distributions
	Poisson Distribution
	Negative Binomial Distribution

	Croston’s Intermittent Demand Model
	Curve Fitting
	Box-Jenkins Statistical Models
	Implementation of Box-Jenkins in Forecast Pro
	Box-Jenkins Background
	Description of the ARIMA Model
	Seasonal Models
	Selecting Model Orders

	Dynamic Regression
	Description of Dynamic Regression Model
	Dynamic Regression Diagnostics

	Bass Diffusion Model
	Forecasting By Analogy
	Model Statistics
	Box-Cox Power Transforms
	Safety Stocks
	Outlier Detection and Correction
	Trading Day Effects

	Methodology of Automatic Forecasting
	Introduction
	Classification of Time Series
	Multiple-level Forecasting
	Incorporation of Additional Information
	Selection of Forecasting Method
	Model Selection via Out-of-Sample Testing

	Glossary
	Bibliography
	Index

